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A finite volume method
for steady state 2D shallow

water flows
J.G. Zhou and I.M. Goodwill

Department of Civil Engineering, University of Leeds, Leeds, UK

Introduction
If the wind and Coriolis forces are neglected then the governing equations for
steady state two dimensional shallow flow in an open channel can be written in
Cartesian co-ordinates as

(1)

A = Area of control volume face

Cb = Bed friction coefficient

Cw = Friction factor at wall of channel

D1
u, D2

u, Du
z = Coefficients in equation (25)

D1
v, D

2
v, D

v
z = Coefficients in equation (26)

fe, fn, fs = Geometric interpolation factors

g = Gravitational acceleration (=
9.81 m2/s)

Hu, Hv = Terms related to neighbouring
velocities in equations (25) and
(26)

h = Water depth

k = Von Kármán constant (= 0.4)

n→ = Unit vector normal to the cell
surface outward

Qe, Qw, Qn, Qs = Discharges through the cell
faces, e, w, n, s

Sx, Sy = Source terms in equations (23)
and (24)

U
→
wn, U

→
ws = Velocity vectors normal and

parallel to the wall respectively

u, v = Depth-averaged x and y direction
components of the velocity

u* = Shear velocity

V
→

= Velocity vector

x, y = Cartesian co-ordinates

z = Elevation of channel bed above
arbitrary datum

[[A, B]] = Maximum of A and B

α = Under-relaxation factor for
velocity

αh = Relaxation factor for depth

ξ, η = Axes of curvilinear co-ordinates

ε = Depth-averaged diffusion coefficient

ρ = Fluid density

τ→w = Shear stress vector at the wall

τbx, τby = Bed shear stresses in x and y
directions

Ω = Volume of the control volume

∇ = Vector differential operator

Superscripts
* = Value of the quantity from the

latest iteration

** = Value of the quantity from the
previous iteration

' = Quantity correction

Subscripts
E, W, N, S, P = Grid points (Figure 2)

e, w, n, s = Cell face points (Figure 2)

Nomenclature
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where x and y are the co-ordinates in the longitudinal and transverse
directions respectively, u and v are the depth averaged velocity components
in the x and y directions, h is the water depth, ρ is the fluid density, ε is the
depth averaged diffusion coefficient, τbx and τby are the bed shear stresses in
the x and y directions and p is the hydrostatic pressure which is defined by
equation (4)

(4)

where g is gravitational acceleration and z is the elevation of the channel bed
above an arbitrary datum. The bed shear stresses, τbx and τby can be described
using the depth averaged velocities as follows

(5)

where Cb is the bed friction coefficient. If a linear distribution of the shear stress
is assumed then the depth averaged diffusion coefficient, ε, is given by

(6)

where k is the von Kármán constant (= 0.4); and u* is the shear velocity which
can be derived from equation (5) as

(7)

The momentum equations (2) and (3) can be written in weak conservation form
as1

(Here the z is not taken into account, because it is unchanged for a fixed bed.)
By substituting equations (4) and (5) into equations (8) and (9), the two

momentum equations with three primitive variables u, v and h in strong
conservation form can be written as follows:

(8)

(9)

(2)

(3)
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(10)

(11)

The continuity equation remains unchanged, since it is already written in
strong conservation form.

The set of governing flow equations, (1), (10) and (11), together with the bed
shear velocity equation (7) can be written in vector notation as

(12)

(13)

(14)

where V
→

is the depth-averaged velocity vector.
Equations (12) and (13) contain three primitive variables (u, v and h) and are

in strong conservation form whereas equations (1), (8) and (9) contain four
variables (u, v, h and p) and are in a weak conservation form. In the weak
conservation form the depth, h, is related to the pressure, p, through equation
(4). In the strong conservation form the velocity is related to the depth by both
linear and quadratic terms, whereas in the weak conservation form the velocity
is linearly proportional to depth.

The majority of previous solutions to this problem have been based on the
solution of equations (1), (2) and (3) using a straightforward finite difference
approach2. Early attempts to use the control volume approach assumed that the
change in water depth was sufficiently small so that the continuity equation
could be written as

(15)

While this may be an acceptable approximation for some flow situations, it is
not so in a channel bend, where the transverse variation in depth affects the
whole of the velocity field. In a recent paper, Zhou3 studied the velocity depth
coupling and proposed a SIMPLE-like scheme to preserve the coupling using a
solution which incorporated the control volume method. The principal
advantage of this approach is that the solution maintains the strong
conservation form of the equations, thus considerably improving the accuracy

∂
∂

∂
∂

u
x

v
y

+ = 0
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of the solution. However there is a disadvantage in that the solution is made on
a staggered grid which makes the methodology difficult to apply to problems
with complex boundary geometries.

Mathematical model
Grid generation
Since the discretized equations contain only first order terms, neither
orthogonality nor smoothness of the grid lines are particularly important hence
a simple algebraic method can be used to generate the grid lines. This has
several advantages, the principal ones being that the grid can quickly and
easily be generated by the computer and the points can readily be placed where
they are most needed. The method used here is due to Demirdzic1 and can be
written as

(16)

where Ni and Nj denote the numbers of grid points in the ξ and η directions. This
is shown diagrammatically in Figure 1.

Discretized flow equations in the computational domain
The strong conservation form of the equations in vector notation, equations (12)
and (13), was used for discretization since this guarantees conservation of the
components of the vectors. The continuity equation can be integrated over the
area of the control volume (shaded area in Figure 2) to give

(17)

where Ω is the area of the solution domain.

Figure 1.
Grid generation
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By applying the Gauss divergence theorem to this equation it can be
integrated around the boundary of the domain to yield

(18)

where n→ is the outwardly directed unit vector normal to the surface of the cell
and A is the length of the closed line of the cell. By expanding equation (18) the
following is established

(19)

which can be much more simply written as
(20)

where Qe, Qw, Qn and Qs are the discharges through the cell faces e, w, n and s,
respectively and Ae, An, Aw and As are the areas of corresponding cell faces e,
n, w and s. Clearly equation (20) is a discretized form of the law of conservation
of mass with constant fluid density.

The momentum equation can be similarly integrated over the control volume
hence equation (13) becomes

(21)

By applying the Gauss divergence theorem, the equation can be integrated
around the control volume to yield

Figure 2.
Control volume in (a)
physical domain, and (b)
computational domain
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(22)

If an upwind scheme is used for the convection terms, equation (22) can
readily be discretized in the x and y directions. In the x direction the equation
becomes

(23)

where Ai
xP and Ai

yP are the Cartesian components of the area vector at grid
point P in the physical domain, i.e. A

→
1
P = —sn n→1 and A

→
2
P = —we →n2 (see Figure 2); →n1,

→n2 are the unit vectors normal to the grid lines —sn and  —we outward respectively
and

Here [[A, B]] denotes the maximum of A and B, and the subscripts E, W, N and
S signify the grid points at east, west, north and south with reference to the
central grid point P (see Figure 2).

It may be noted that all the terms in equation (23) have a clear physical
meaning, for example, the term, A1

xP (h
2
e – h2

w), means the pressure force exerted
on the control volume in the x direction.

Similarly in the y direction it becomes
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where

The terms in Sx and Sy such as (une – Use) may be calculated as

Here

where fe, fn and fs are the geometric interpolation factors defined by

The details of the computation for all the geometric quantities such as Ω and A
→i

follow standard methods which can be found in many texts4.
It will be noticed that all the coefficients in equations (23) and (24) satisfy

the Scarborough condition and the four basic rules of Patankar5; hence the
convergence of the discretized equations should be achieved without
difficulty.

Coupling of velocity and depth
If an under-relaxation factor α (0 < α < 1.0) is introduced into the discretized
momentum equations then

(25)

(26)

where u**
P and v**

P are the values of uP and vP from the previous iteration and the
other newly introduced variables are defined as
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It is noted that in equations (25) and (26) the velocity components (u and v) are
no longer linearly proportional to the depth, but are proportional to the square
of the depth (h2) and the depth (h) itself, whereas the velocity field is linearly
proportional to the pressure field in the Navier-Stokes equations for general
flows. Moreover all the coefficients in these equations are functions of both
velocity and depth, while the coefficients for general flows are constants or
functions of velocity only. These characteristics make the use of solution
schemes based on a SIMPLE-like approach fail for shallow water flows, thus
a modification to the method is required, this is achieved as a two part
process, a predictor stage followed by a corrector one, these are described in
turn below.

Predictor stage: an initial estimate of the depth is made and input into
equations (27) and (28) to yield the following equations

(27)

(28)

where h* is the estimate of depth and u*
p and v*

p are the velocities evaluated from
h*. When a. conventional linear interpolation method was used to solve
equations (27) and (28) it was found that the depths oscillated. This was
overcome by using the momentum interpolation approach6 to determine the
velocities and discharges at the cell faces. The assumption underlying this
approach is that, with the exception of the terms containing differences in depth
normal to the cell face, the variation in the values of all the terms between the
grid points is assumed to be linear. The terms containing the differences in
depth normal to the cell faces are calculated directly by using the differences
between the values at the adjacent grid points.
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Thus the velocities at the face of cell e can be written as

(29)

(30)
where

In these equations the under relaxation factor, α, is used in the same manner as
for equation (25) and equation (26) such that the solution to the equations is
independent of the value of the under-relaxation factor chosen7.

The coefficients for the velocities at cell face e such as u*
e are interpolated as

follows

and similarly for cell face n.

(31)

(32)

where

The velocities at cell faces w and s can be similarly expressed and the
discharges can be calculated, for example the estimate of the discharge through
cell face e, Qe, can be expressed as

(33)

The depth h* and velocities u* and v* do not normally satisfy the continuity
equation therefore it is necessary to correct them in order that the continuity
equation is satisfied. This is achieved in the corrector stage of the solution.

Corrector stage: if the depth correction is h' then the discharges corresponding
to this correction can be determined, for example the correction to Qe can be
written as

(34)

It will be noted that the term containing the difference in depths is the only one
affected by the correction, the effect of the correction on the other terms is
ignored. This omission may affect the speed of convergence but will have no
effect on the final solution. The depth correction equation can be obtained by
substituting all the discharges obtained from expressions similar to Equation
(34) into the continuity equation (see Equation (20)) to yield

(35)
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where

Equation (35) is solved to yield the depth correction h' which is then used to
update the depth and velocities as follows

where αh is a relaxation factor for depth (0 < αh ≤ 1.0).

Solution procedure
The set of discretized equations can be solved by a variety of methods,
depending on the type of computer available. Normally an iteration method is
used to save computer time and space. Without losing generality the iterative
solution procedure can be split into a series of steps as follows:

1. Make an estimate of the initial depth field h*.

2. Solve equations (27) and (28) with α ≈ 0.5 to obtain the velocities u* and v*.

3. Solve equation (35) to obtain the depth correction hence the new estimate
of depth from equation (36).

4. Correct velocities u* and v* by using equations (37) and (38) to obtain u
and v.

5. Repeat the procedure from step 2 until convergence is reached.

Boundary conditions
The determination of an open channel surface profile is the solution of a
boundary value problem hence the boundary conditions must be determined

(36)

(37)

(38)
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accurately, otherwise an incorrect solution will be obtained. If secondary
flows are ignored then the flow is essentially one dimensional and the
boundary conditions can be defined at one end of the channel as the
downstream end for subcritical flow and the upstream end for supercritical
flow. Once secondary flows are taken into account these simple conditions
are insufficient to fully describe the boundary conditions since the flow
situation at the side walls must also be considered. The boundary conditions
for secondary flow have to be known for the full length of the channel and
can be defined as follows

• At inlet: the discharge Q or velocity u is specified; v = 0; and h is defined
for supercritical flow.

• At outlet: ∂u/∂s = 0; ∂v/∂s = 0; and h is defined for subcritical flow.

• At the side wall: the velocity vector normal to the wall is set to zero, i.e.
U
→
wn = 0; and a slip velocity vector U

→
ws which is parallel to the wall is

specified through the following equation:

(39)

in which τ→w is the shear stress vector at the wall, Cw is friction factor at the wall
and n is the co-ordinate perpendicular to the wall.

Verification and application
This model is tested by analysing the flow pattern in a strongly curved channel.
This problem has the advantage of having been extensively studied in the past,
hence both experimental and analytical results are readily available for
comparison; furthermore the secondary flows generated in the bend provide
quite a severe test for any numerical model. For comparative purposes, the
experimental results provided by Rozovski8 are used, the data for his Run 8 are
given in Table I. Figure 3 shows the principal dimensions of the experimental
apparatus.

The grid generation
Since the geometry of the channel is regular then it is a straightforward matter
to generate the computational grid. A fine grid is required in those parts of the
solution domain where there is a large variation in either the geometry or the
dependent variables. For this particular problem a fine mesh of grid points is
required in the entry and exit areas and close to the side walls. Two types of
grid were used, one semi-uniform where grid lines were spaced closely together
near the channel walls and uniformly in the longitudinal direction, this is shown
in Figure 3. A second form is non-uniform where the longitudinal density of the
grid also varies, this is shown in Figure 4. In order to ensure that the solutions
were not grid dependent, both types of grid were refined until the results were
unchanging. The grids shown in Figures 3 and 4 produce grid independent
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results, Figure 3 contains 142 × 14 control volumes and Figure 4 contains 82 ×
14 control volumes.

The discretized equations were solved using a line-by-line iteration method
and the computations were undertaken on a SUN SPARC Station model IPC.
Both grids produced similar results however the results produced from the non-
uniform grid compare slightly more favourably with the experimental results.
It takes 3,369 seconds CPU time on semi-uniform grids to obtain the solution
and 2,121 seconds CPU time on non-uniform grids; that is about 37 per cent less
CPU time.

The computed results
Except where otherwise stated, all the results in this section were obtained
using non-uniform grid lines, the parameters used were Cb = 0.021, Cw = 0.005,
α = 0.5 and αh = 0.9.

Velocity vectors computed from the two grid types are plotted in Figure 5
and Figure 6. They clearly show the acceleration on the inner wall of the

Discharge (l/s) 12.3

Mean entrance velocity (m/s) 0.25
Entrance depth (m) 0.063
Width of channel (m) 0.8
Bend radius (m)

Inner 0.4
Centre 0.8
Outer 1.2

Bend angle (degrees) 180
Cross-section Rectangular
Bottom slope Zero

Figure 3.
Plan view of channel

and semi-uniform 
grid lines

Table I.
Experimental condition of

Rozovski’s Run 8 data
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channel and the deceleration on the outer wall as the fluid enters the bend.
Furthermore the velocity distributions at the entrance and exit of the bend
follow closely the patterns shown in Rozovski’s experiments. The velocity
distribution at entry is characterized by an acceleration on the inside of the
bend and a similar acceleration is seen at the outside of the bend as the fluid
leaves.

Figure 4.
Non-uniform grid lines

Figure 5.
Velocity vectors based
on semi-uniform grids

Figure 6.
Velocity vectors based
on non-uniform grids



Steady state 2D
shallow water

flows

17

It is difficult to make comparisons between the computed and laboratory water
level variations round the bend because of the difficulty of measuring the
experimentally determined levels accurately. However the numerical model
produced the expected transverse level differences round the bend. A
comparison between the computed levels and Rozovski’s measured ones is
given in Figure 7 and Table II. The latter shows that the comparison is good
with errors less than 1mm except at the three points marked with asterisks.
These larger errors may be due to inaccuracies in the experimental data, there
do not appear to be any irregularities in the computed depths at these points.

Figure 8 and Table III show the measured and computed values of the
tangential velocities at various positions around the channel bend. With a few
exceptions the errors are less than 10 per cent.

S (m) her (cm) hcr (cm) Error (cm) hel (cm) hcl (cm) Error (cm)

5.0 0.000 0.002 0.002 0.000 –0.002 0.002
6.0 0.090 0.091 0.001 –0.240 –0.245 0.005
6.5 0.140 0.148 0.008 –0.620 –0.592 0.028
7.2 0.260 0.175 0.085 –0.410 –0.628 0.218*
8.0 0.260 0.196 0.064 –0.270 –0.541 0.271*
8.5 0.310 0.165 0.145* –0.210 –0.245 0.035
9.4 0.000 0.003 0.003 0.000 –0.001 0.001

Note: her and hel are experimental data of super-elevation on the outer and inner banks, respec-
tively, hcr and hcl are the corresponding values from the computation

Table II.
Comparison of super-

elevation relative to
central depth in bend

Figure 7.
Water surface super-

elevation in bend
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The accuracy of the numerical procedure
The numerical procedure proposed is subject to some numerical diffusion, this
is probably caused by the upwind approximation of the convection terms.
Patankar5 has shown that numerical diffusion is particularly severe when the
direction of flow is not parallel to one of the grid lines. Consideration of Figure
5 and Figure 6 shows that such flows occur within the channel bend, especially
in the regions close to the inner bank, for example velocity vectors at s = 6.6 m,
s = 7.2 m and s = 8.0 m (see Figure 5). Furthermore the use of momentum inter-
polation may produce physically unrealistic velocities in regions of the flow
where the depth is changing rapidly. In an attempt to further investigate the
accuracy of the numerical solution, five cross sections were chosen at several
points in the channel and the magnitudes of various terms in the momentum
equations were investigated. The positions of these cross sections are shown in
Figure 9. In order to estimate the amount of diffusion induced by the upwind
scheme and the extent of the errors in the computation of the cell velocities
caused by the momentum interpolation, a central difference approximation was
used to determine the values of the convection terms and cell velocities at the
five cross sections. Using this approach the terms in the momentum equation no
longer sum to zero hence the magnitude of the closing residual provides a
measure of the second order truncation errors introduced into the solution by
the momentum interpolation and the upwind differencing. Figure 10 shows the
balance of all the terms of the momentum equation in the x direction at sections

Figure 8.
Profiles of depth-
averaged tangential
velocities
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S (m) Ve (m/s) Vc (m/s) Er S (m) Ve (m/s) Vc (m/s) Er

5.0 0.228 0.231 0.011 7.2 0.307 0.287 0.065
5.0 0.268 0.231 0.137 7.2 0.303 0.328 0.082
5.0 0.261 0.232 0.112 7.2 0.265 0.296 0.117
5.5 0.196 0.208 0.064 8.0 0.223 0.203 0.089
5.5 0.241 0.230 0.047 8.0 0.245 0.222 0.092
5.5 0.248 0.233 0.059 8.0 0.267 0.250 0.062
5.5 0.254 0.237 0.068 8.0 0.257 0.285 0.110
5.5 0.215 0.221 0.027 8.0 0.195 0.230 0.180
6.0 0.160 0.174 0.087 8.5 0.326 0.252 0.226
6.0 0.230 0.209 0.089 8.5 0.304 0.258 0.151
6.0 0.252 0.229 0.091 8.5 0.277 0.264 0.049
6.0 0.280 0.259 0.076 8.5 0.228 0.267 0.172
6.0 0.322 0.301 0.064 8.5 0.157 0.114 0.276
6.6 0.147 0.141 0.039 9.0 0.362 0.299 0.173
6.6 0.199 0.193 0.029 9.0 0.336 0.292 0.131
6.6 0.261 0.231 0.116 9.0 0.294 0.276 0.063
6.6 0.313 0.284 0.091 9.0 0.228 0.248 0.088
6.6 0.359 0.352 0.019 9.0 0.150 0.161 0.074
7.2 0.183 0.178 0.024 10.0 0.335 0.293 0.126
7.2 0.202 0.191 0.054 10.0 0.325 0.291 0.105
7.2 0.213 0.202 0.051 10.0 0.285 0.278 0.025
7.2 0.225 0.225 0.001 10.0 0.240 0.260 0.082
7.2 0.245 0.237 0.032 10.0 0.170 0.193 0.135
7.2 0.278 0.262 0.056
Notes: S is the distance of the central line of the channel from the entrance
Er = |Vc – Ve|/Ve, where Ve is experimental value and Vc the computational one

Table III.
Comparison of 

depth-averaged 
tangential velocity

Figure 9.
Five cross-sections

in the channel
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1 and 5. The corresponding balance in the transverse direction is too small to be
of significance. It should be noted that in this and subsequent figures only
significant terms are plotted for clarity. As seen in the figures, at cross-sections
1 and 5, there are balances between the depth gradients and the bottom shear
stresses and no numerical diffusion is apparent. The closing term suggests that
no physically unrealistic velocities are present at these two sections.

In Figure 11 the balances of all the terms in the x and y direction momentum
equations at section 2 are plotted. It is clearly seen that there are balances
among the depth gradients, the convection terms and the bottom shear stresses
and the other terms are insignificant. For detailed consideration of the balances
the section is split into two regions, the flow in the inner half of the bend and the
flow in the outer half. In the outer half the positive super-elevation of the water
surface leads to a large negative y depth gradient, negative x convection and
positive y convection terms which carry the water towards the centre of the
channel. Also, a small positive x depth gradient has a slight influence on the x
direction velocity. In the inner half, the negative super-elevation of water and
the positive x convection term lead to a large negative y depth gradient and
positive y convection term which carry the water towards the centre of the
channel. All these details are consistent with the expected flow pattern in the
upstream part of the bend. As previously, the closing term suggests that
numerical diffusion is not present and the effect of non-physical velocities is
insignificant.

Figure 10.
Balance of x direction
momentum equation
evaluated from
numerical solution. The
symbols mean: n =
depth gradient g/2∇ h2;
∆ = convection ∇ ·
(hV

→
V
→

); ◊ = bottom
shear stress τ→b/ρ; l =
closing term (Σ all the
terms)
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Furthermore, the situation at section 4 is nearly the reverse of that at section 2,
hence the similar comments apply (see Figure 12).

As shown in Figure 13, there are balances at section 3 between the depth
gradient and the convection term for the x momentum equation and between
the depth gradient and the bottom shear stress for the y momentum equation.
Clearly, at the middle section of the 180° bend, the large positive x depth
gradient and large negative x convection term are the dominant features of
the flow. For the y momentum equation there is some error in the balance,
probably this is caused by the presence of both numerical diffusion and non-
physical velocities. The magnitude of the closing term is small compared
with the values of the dominant terms, therefore it has little effect on the
solution.

The above analysis indicates that the accuracy of the solution is
independent of the grid type chosen. Furthermore the results indicate that
there is little numerical diffusion in bends where secondary flows are small9

– such as the present one – and that the possible non-physical velocities
induced by momentum interpolation do not have any noticeable effect on the
results10.

Conclusions
A finite volume method for steady state 2-D shallow water flows is developed
which can be used to solve flow problems in channels with arbitrary or

Figure 11.
Balance of momentum

equation evaluated from
numerical solution
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Figure 13.
Balance of momentum
equation evaluated from
numerical solution

Figure 12.
Balance of momentum
equation evaluated from
numerical solution
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irregular boundary shapes by using a collocated body-fitted co-ordinate
system. The momentum interpolation method is used to avoid depth
oscillations and a modified SIMPLE-like scheme is described to deal with the
velocity-depth coupling in which the velocity field is not linearly proportional to
the depth. This feature in the construction of the model guarantees that there is
no numerical instability and that a physically realistic solution is obtained. The
comparison between the computed and laboratory results has shown that the
velocity and the super-elevation in the bend can be predicted correctly. The
analysis of numerical accuracy shows that neither numerical diffusion nor non-
physical velocities are found to have any noticeable effect on the solution. The
study indicates that the use of momentum interpolation is valid and that the
model may be applied to practical problems.
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